Modulus of elasticity 1.2.02-00

What you can learn about ...

- → Young's modulus
- → Modulus of elasticity
- → Stress
- → Deformation
- → Poisson's ratio
- → Hooke's law

Principle:

A flat bar is supported at two points. It is bent by the action of a force acting at its centre. The modulus of elasticity is determined from the bending and the geometric data of the bar.

 $E[N \cdot m^{-2}]$

What you need:

Dial gauge, 10/0.01 mm	03013.00	1	
Holder for dial gauge	03013.01	1	
Flat rods, set	17570.00	1	
Knife-edge with stirrup	03015.00	1	
Bolt with knife edge	02049.00	2	
Weight holder for slotted weights	02204.00	1	
Precision spring balance 1 N	03060.01	1	
Tripod base -PASS-	02002.55	2	
Support rod -PASS-, square, $l = 250 \text{ mm}$	02025.55	2	
Support rod -PASS-, square, $l = 630 \text{ mm}$	02027.55	1	
Right angle clamp -PASS-	02040.55	5	
Slotted weights, 10 g, coated black	02205.01	10	
Slotted weight, 50 g, coated black	02206.01	6	
Measuring tape, $l = 2 \text{ m}$	09936.00	1	

$2.059 \cdot 10^{11}$ Steel 10×1.5 10×2 $2.063 \cdot 10^{11}$ Steel Steel 10×3 $2.171 {\cdot}\, 10^{11}$ $2.204 \cdot 10^{11}$ Steel 15×1.5 Steel 20×1.5 $2.111 \cdot 10^{11}$ $6.702\cdot10^{10}$ Aluminium 10×2 $9.222 \cdot 10^{10}$ 10×2 Brass

Dimensions [mm]

Table 1: The modulus of elasticity for different materials.

Material

Tasks:

- 1. Determination of the characteristic curve of the dial gauge
- 2. Determination the bending of flat bars as a function
 - \bullet of the force
 - of the thickness, at constant force
 - of the width, at constant force
 - of the distance between the support points at constant force
- 3. Determination the modulus of elasticity of steel, aluminium and brass.

Complete Equipment Set, Manual on CD-ROM included Modulus of elasticity P2120200