

Computer Controlled **Absorption Refrigeration Unit,**with SCADA

TRAC

Technical Teaching Equipment

1 Unit: TRAC. Absorption Refrigeration Unit

Key features:

- Advanced Real-Time SCADA.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on Labview.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- ▶ Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- > Optional CAL software helps the user perform calculations and comprehend the results.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here:

OPEN CONTROL

MULTICONTROL

REAL TIME CONTROL

You

GENERAL DESCRIPTION

TRAC Unit, developed by EDIBON, is a complete laboratory unit for the demonstration of absorption refrigeration.

This unit will allow the familiarization of the students with the principles of refrigeration absorption system in use today.

Absorption refrigeration systems are typically used in applications that require lower power usage such as refrigeration in recreational vehicles, domestic refrigerators, etc. Due to their easy adaptability to operate using either electricity or fuel gas, they are useful in remote locations where the supply of electricity is not readily available, and can be easily adapted to LPG, solar power, etc.

This unit is provided with a dual power source (heat source) of LPG and electricity. A pressure regulator to adapt the gas to the corresponding inlet pressure is supplied for the operation with LPG (30-50 mbar).

The fluid used in the refrigeration cycle of the TRAC unit is a solution of water and ammonia (NH₃), being the ammonia the refrigerant and the water the absorbent. An important advantage is that these agents are totally innocuous for the environment. The cycle makes use of the great affinity of the ammonia with the water, being the ammonia used as a cooling agent since it is easily absorbed by water.

The unit has a generator or heater, where the water and ammonia solution is heated at a high pressure. Two substances are separated then by boiling: on one hand, vapour with a high concentration of ammonia, called concentrated solution, and on the other hand, a liquid solution with a low concentration of ammonia, called diluted or poor solution.

Vapour passes through a condenser (finned exchanger) where it is cooled until is condenses and it passes to liquid state, reducing its temperature.

This ammonia concentrated solution enters a heat exchanger, where it is further cooled and its pressure is reduced to enter into the evaporator. Due to this pressure difference, it is evaporated at a low temperature.

The unit includes a tank for the absorber, where the solution rich in ammonia in liquid state formed by the absorber and the ammonia vapour from the evaporator stay together.

The absorber makes it possible to obtain a low pressure in the evaporator so that the refrigerant (ammonia) boils at a lower temperature, taking the required heat from the water, reducing its temperature.

The liquid solution rich in ammonia coming from the absorber is heated in the generator with the aim of separating the pure ammonia vapours and the water (absorber). Ammonia vapours go to the condenser and the poor solution goes to the absorber, where the absorption of the ammonia in vapour state is generated again.

As a result, by using the TRAC unit, students will familiarize with each of the individual components of an absorption refrigeration unit (freezing and cooling) and will have the possibility of selecting the heat source between an electrical resistance or LPG.

You can know at any time the measurement of:

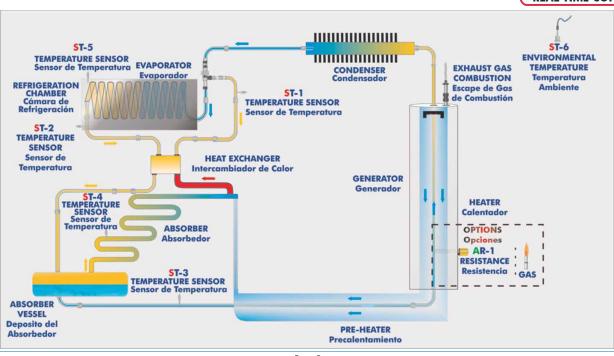
The temperature in the absorber, evaporator and condenser.

The temperature at the absorber's tank inlet.

The temperature at the refrigeration tank.

The room temperature.

The power consumed by the electrical resistance. Measurement of voltage and current.


This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control and Data Acquisition Software Packages, for controlling the process and all parameters involved in the process.

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION =

OPEN CONTROL

MULTICONTROL

REAL TIME CONTROL

Page 2 www.edibon.com

COMPLETE TECHNICAL SPECIFICATIONS (for main items)

With this unit there are several options and possibilities:

- Main items: 1, 2, 3, 4, 5 and 6.
- Optional items: 7, 8, 9, 10, 11 and 12.

Let us describe first the main items (1 to 6):

① TRAC. Unit:

Anodized aluminium structure and panels in painted steel. Main metallic elements in stainless steel.

Diagram in the front panel with similar distribution to the elements in the real unit.

This unit is provided with a dual power source (heat source) of LPG and electrical resistance

Condenser: finned exchanger. Evaporator. Heat exchanger. Absorption tank. Absorber. Cooling compartment or tank with temperature sensor.

Generator or heater: possibility to select the heat source between an electrical resistance or LPG.

To work with LPG:

Burner and piezoelectric igniter: to ignite the flame of fuel. Three stages gas manual control.

Pressure regulator with manometer (range 0-3 bar) to regulate the LPG inlet pressure to the generator.

To work with an electrical resistance:

Electrical heater: 230V, 125 W. Control of supplied power from the computer (SCADA software).

6 Temperature sensors distributed at key points of the unit.

Sensors of power, current and voltage consumed by the electrical resistor.

Regarding safety, the unit is perfectly watertight to avoid ammonia leakages.

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Optional accessory: (not included in the minimum supply).

-TRAC-PS. Solar Panel to work with the TRAC unit.

② TRAC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

<u>Control interface box with process diagram in the front panel</u> and with the same distribution that the different elements located in the unit, for an easy understanding by the student.

All sensors, with their respective signals, are properly manipulated from -10V. to +10V. computer output. Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors. Single cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure. Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.

Real time curves representation about system responses. Storage of all the process data and results in a file. Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. All the actuators and sensors values and their responses are displayed on only one screen in the computer.

Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process. Real time computer control for pumps, compressors, resistances, control valves, etc. Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

TRAC Unit

TRAC/CIB

Page 3 www.edibon.com

3 DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Data acquisition board (National Instruments) to be placed in a computer slot.

Bus PCI.

Analog input:

Number of **channels = 16** single-ended or 8 differential.

Resolution = 16 bits, 1 in 65536.

Sampling rate up to: 250 KS/s (kilo samples per second).

Input range (V) = ± 10 V.

Data transfers = DMA, interrupts, programmed I/O.

DMA channels=6.

Analog output:

Number of channels=2.

Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 833 KS/s.

Output range(V)= $\pm 10 V$.

Data transfers=DMA, interrupts, programmed I/O.

Digital Input/Output:

Number of channels=24 inputs/outputs.

D0 or DI Sample Clock frequency: 0 to 1 MHz.

Timina

Number of Counter/timers=2.

Resolution: Counter/timers: 32 bits.

¶ TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems.

Graphic and intuitive simulation of the process in screen.

Compatible with the industry standards.

Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

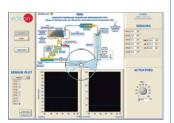
Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Comparative analysis of the obtained data, after the process and modification of the conditions during the process.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.


This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

⑤ Cables and Accessories, for normal operation.

Manuals: This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

★ References 1 to 6 are the main items: TRAC + TRAC/CIB + DAB + TRAC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

TRAC/CCSOF

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH MAIN ITEMS

- 1.- Demonstration of the refrigeration process.
- 2.- Demonstration of the vapour absorption refrigeration cycle and visualization of the most important processes.
- 3.- Familiarisation with the individual components of the absorption refrigeration unit.
- 4.- Operation of a gas absorption refrigeration unit using either electricity or LPG as the heat source.
- Comparison of the refrigeration temperature obtained using LPG or an electrical resistance as a heat source.
- 6.- Measurement of the electrical power.
- Influence of the electrical power in the refrigeration temperature obtained.
- 8.- Measurement of the temperature in the main points of the absorption refrigeration process.

Additional practical possibilities:

9.- Sensors calibration.

Other possibilities to be done with this Unit:

10.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

11.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc, in real time.

12.-The Computer Control System with SCADA allows a real industrial simulation.

- 13.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 14.- This unit can be used for doing applied research.
- 15.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- Control of the TRAC unit process through the control interface box without the computer.
- 17.-Visualization of all the sensors values used in the TRAC unit process.
- By using PLC-Pl additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

REQUIRED SERVICES =

- -Electrical supply: single-phase, 220 V/50 Hz. or 110 V/60 Hz.
- -LPG gas. LPG: fuel consumption = 18g/h at 30 50 mbar. (the unit is supplied with a pressure regulator).
- -Computer (PC).

DIMENSIONS & WEIGHTS

TRAC:

Unit: -Dimensions: 700 x 700 x 700mm. approx.

(27.55 x 27.55 x 27.55 inches approx.)

-Weight: 70 Kg. approx.

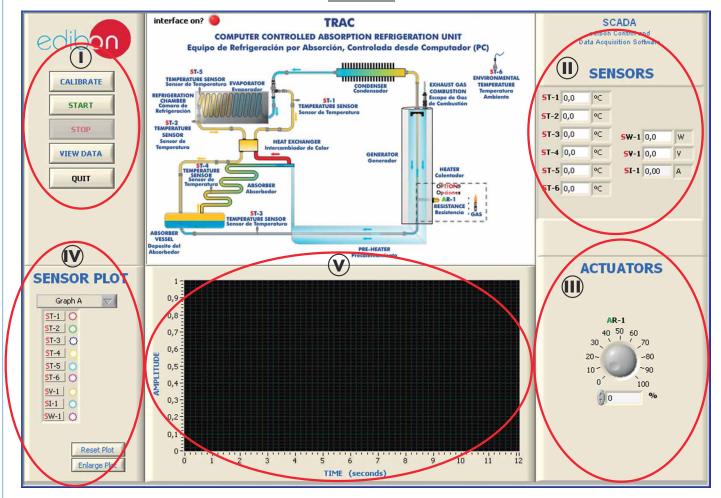
(154.3 pounds approx.).

Control Interface Box:-Dimensions: 490 x 330 x 310 mm. approx.

(19.29x12.99x12.20 inches approx.).

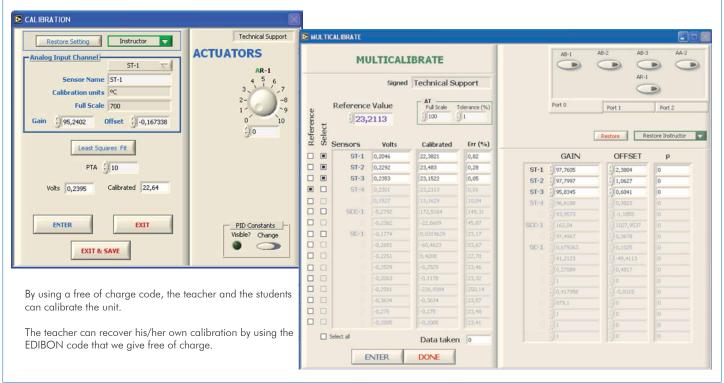
-Weight: 10 Kg. approx.

(22 pounds approx.).


OPTIONAL ACCESSORY

-TRAC-PS. Solar Panel to work with the TRAC unit.

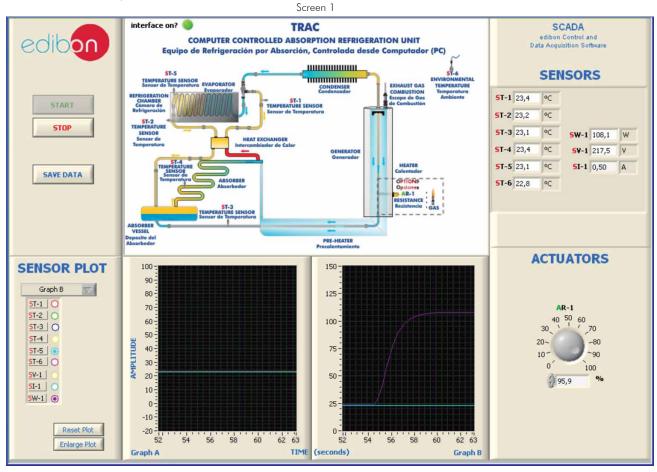
Page 5 www.edibon.com


SCADA

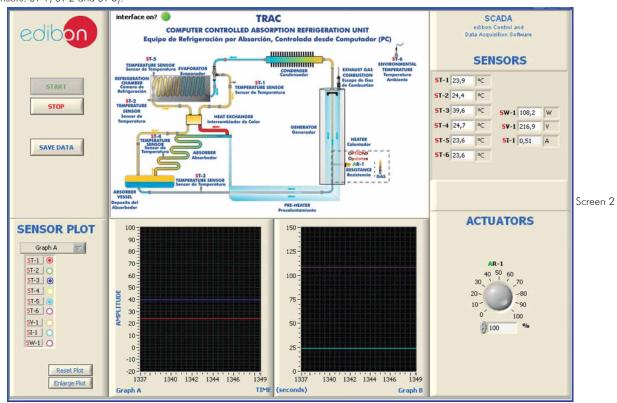
Main screen

- (1) Main software operation possibilities.
- (II) Sensors displays, real time values, and extra output parameters. Sensors: ST= Temperature sensor. SW= Power sensor. SV= Voltage sensor. SI= Current sensor.
- (II) Actuators controls. Actuator: AR= Electrical resistance.
- Channel selection and other plot parameters.
- Real time graphics displays.

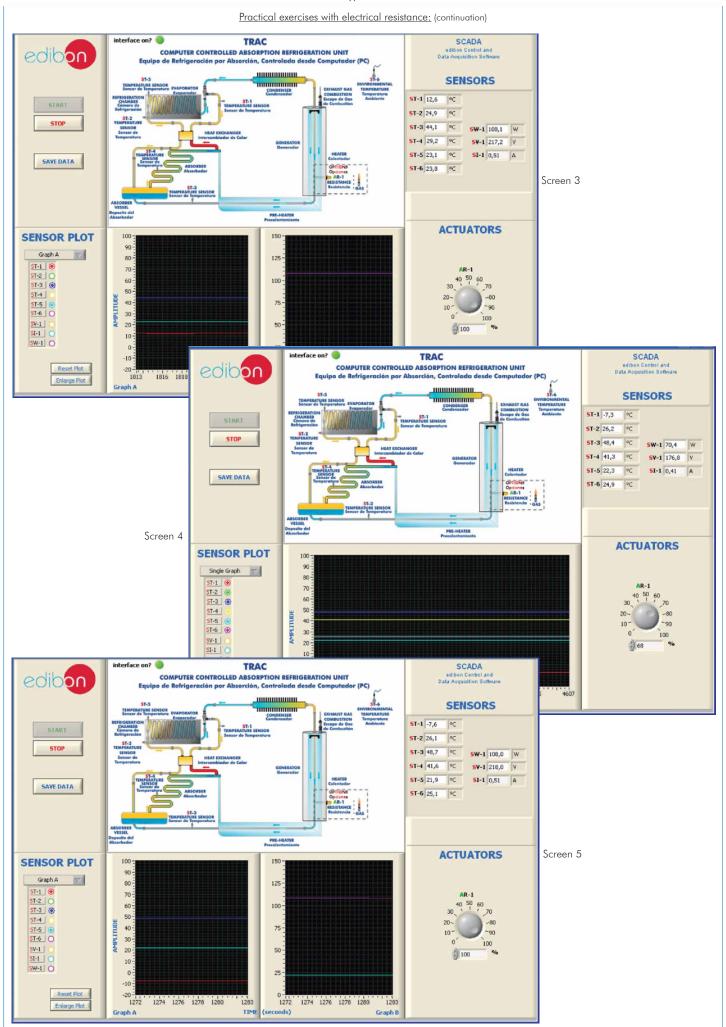
Software for Sensors Calibration


Page 6 www.edibon.com

<u>Practical exercises with electrical resistance:</u>

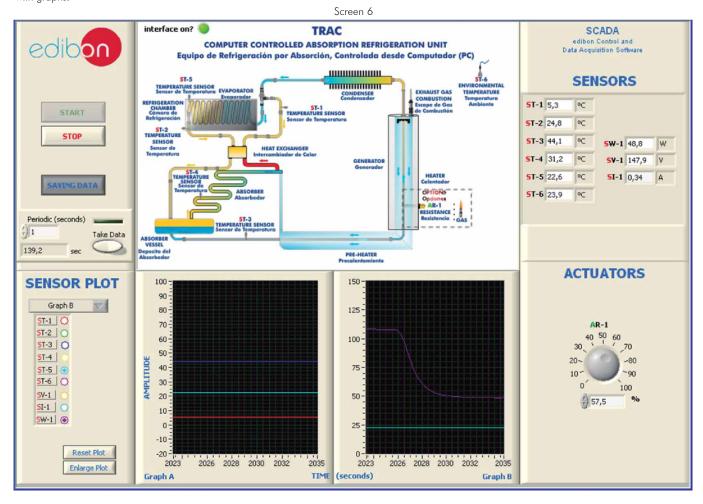

It can be observed in the following screens how the temperature of the different points of the system changes in the course of time as heat is introduced through the electrical resistance.

Screen 1


It can be observed at the beginning of the practical exercises how all the temperatures coincide with the Room temperature (sensor: ST-6). It can be observed in the graph an increase of the electric power up to the 100%, displaying the value of power, current and voltage in the software (sensors: SW-1, SI-1 and SV-1).

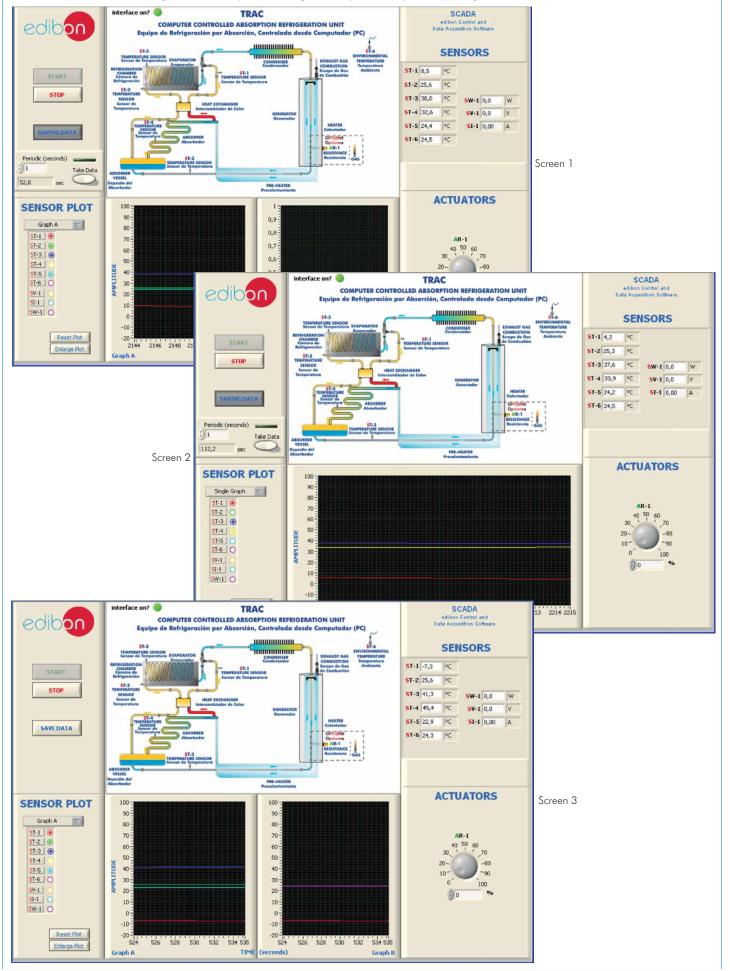
Screens 2 - 5. It can be seen in the following screens how, as time passes, the refrigeration cycle takes place and the temperatures of the absorber and the absorber's tank increase considerably (sensors: ST-3 and ST-4), whereas the evaporator inlet and refrigeration tank temperatures decrease, being the refrigerating power observed (sensors: ST-1, ST-2 and ST-5).

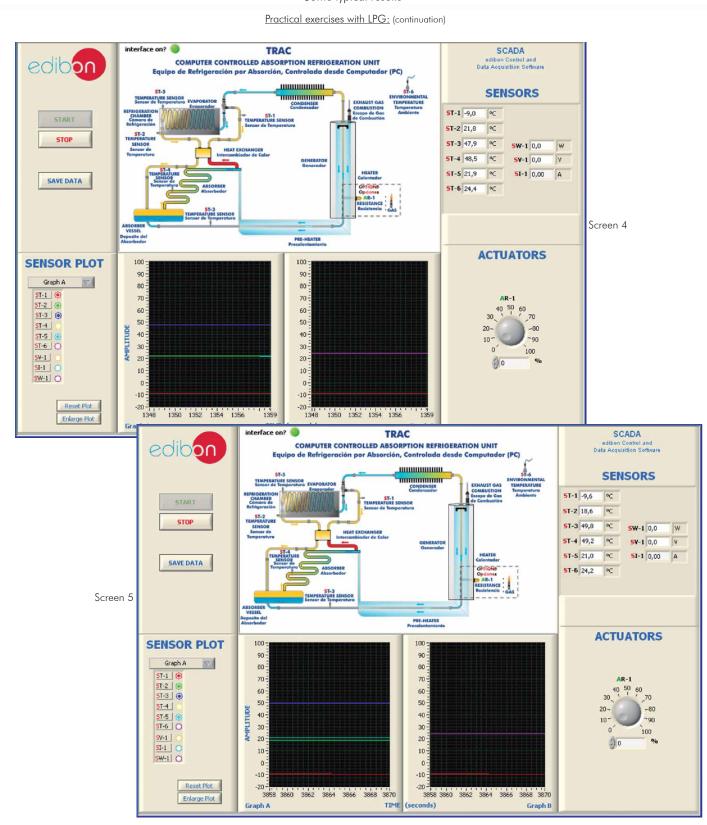
Page 7 www.edibon.com



<u>Practical exercises with electrical resistance:</u> (continuation)

Screen 6.


The power to be supplied can be changed with the actuator of the electrical resistance (AR-1) from 0 to 100 %.


The software displays the value of the power, current and voltage. It can be seen both the change in power and the evolution of the different temperatures with graphs.

Practical exercises with LPG:

Screens 1-5. The absorption refrigeration cycle can also be carried out by using any type of LPG as heat source instead of the electrical resistance. It can be observed in the following screens the temperature change in each part of the system depending on time.

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 12.

All these items try to give more possibilities for:

- a) Industrial configuration. (PLC)
- b) Technical and Vocational Education configuration. (CAI and FSS)
- c) Higher Education and/or Technical and Vocational Education configuration. (CAL)
- d) Multipost Expansions options. (Mini ESN and ESN)

a) Industrial configuration

PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Front panel:

Digital inputs(X) and Digital outputs (Y) block:

16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).

14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

Analog inputs block:

16 Analog inputs (-10 V. to + 10 V.) (through SCSI connector).

Analog outputs block:

4 Analog outputs (-10 V. to + 10 V.) (through SCSI connector).

Touch screen:

 $High \ visibility \ and \ multiple \ functions. \ Display \ of \ a \ highly \ visible \ status. \ Recipe \ function. \ Bar \ graph \ function. \ Flow \ display \ function. \ Alarm \ list.$

Multi language function. True type fonts.

Back panel:

Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.

Inside:

Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable.

Panasonic PLC:

High-speed scan of 0.32 μ sec. for a basic instruction.

Program capacity of 32 Ksteps, with a sufficient comment area.

Power supply input (100 to 240 VAC).

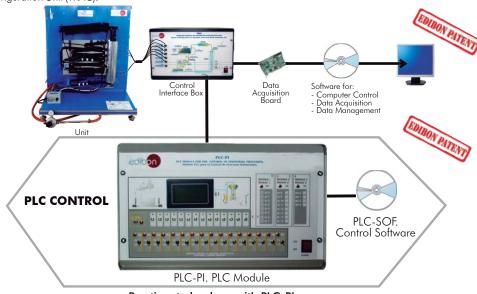
DC input: 16 (24 V DC).

Relay output: 14.

High-speed counter.

Multi-point PID control

Digital inputs/outputs and analog inputs/outputs Panasonic modules.


Communication RS232 wire to computer (PC)

Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.) Weight: 30 Kg. approx. (66 pounds approx.)

TRAC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Absorption Refrigeration Unit (TRAC).

Practices to be done with PLC-PI:

- Control of the TRAC unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the TRAC unit process.
- 3.- Calibration of all sensors included in the TRAC unit process.
- 4.- Hand on of all the actuators involved in the TRAC unit process.
- Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
- 6.- Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for TRAC unit.
- 9.- PLC structure.

- 10.- PLC inputs and outputs configuration.
- 11.- PLC configuration possibilities.
- 12.- PLC programming languages.
- 13.- PLC different programming standard languages.
- 14.- New configuration and development of new process.
- 15.- Hand on an established process.
- 16.- To visualize and see the results and to make comparisons with the TRAC unit process.
- 17.- Possibility of creating new process in relation with the TRAC unit.
- 18.- PLC Programming exercises.
- 19.- Own PLC applications in accordance with teacher and student requirements.

Page 12 www.edibon.com

b) Technical and Vocational Education configuration

®TRAC/CAI. Computer Aided Instruction Software System.

This complete package includes two Softwares: the INS/SOF. Classroom Management Software (Instructor Software) and the TRAC/SOF. Computer Aided Instruction Software (Student Software).

This software is optional and can be used additionally to items (1 to 6).

This complete package consists on an Instructor Software (INS/SOF) totally integrated with the Student Software (TRAC/SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students. These, on the other hand, get a virtual instructor who helps them to deal with all the information on the subject of study.

- INS/SOF. Classroom Management Software (Instructor Software): The Instructor can:

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Print reports.

Develop own examinations.

Detect student's progress and difficulties.

...and many other facilities.

-TRAC/SOF. Computer Aided Instruction Software (Student Software):

It explains how to use the unit, run the experiments and what to do at any moment

This Software contains:

Theory.

Exercises.

Guided Practices.

Exams

For more information see **CAI** catalogue. Click on the following link: www.edibon.com/products/catalogues/en/CAI.pdf

Instructor Software

Student Software

⑨TRAC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

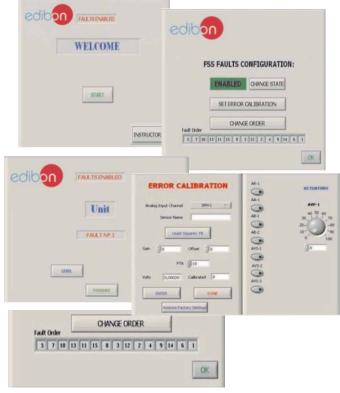
Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

$\label{eq:Faults} \textbf{Faults affecting the actuators:}$

- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:


- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

For more information see **FSS** catalogue. Click on the following link: www.edibon.com/products/catalogues/en/FSS.pdf

Example of some screens

Page 13 www.edibon.com

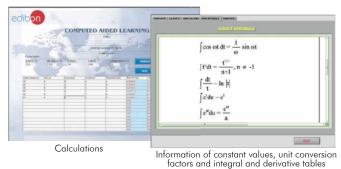
c) Higher Education and/or Technical and Vocational Education configuration

(Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use, specifically developed by EDIBON. It is very useful for Higher Education level.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL will perform the calculations.


CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

For more information see **CAL** catalogue. Click on the following link: www.edibon.com/products/catalogues/en/CAL.pdf

d) Multipost Expansions options

Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The Mini ESN system consists on the adaptation of any EDIBON computer controlled unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/ students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can safe time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

Mini ESN. **EDIBON Mini Scada-Net System** 1 UNIT = up to 30 STUDENTS can work simultaneously Absorption Refrigeration Unit (TRAC) Computer Control Software: Computer Control Interface Box Control + Data Acquisition + Data Management Mini Scada-Net Software 30 Student Computer Posts **OPEN CONTROL** Note: The Mini ESN MULTICONTROL system can be used with any EDIBON REAL TIME CONTROL computer controlled MULTI STUDENT POST

@ESN. EDIBON Scada-Net System.

This unit can be integrated, in future, in a Complete Laboratory with many Units and many Students.

For more information see ${\ensuremath{\sf ESN}}$ catalogue. Click on the following link:

 $\underline{www.edibon.com/products/catalogues/en/units/thermodynamicsthermotechnics/esn-thermodynamics/ESN-THERMODYNAMICS.pdf}$

Page 14 www.edibon.com

ORDER INFORMATION

Main items (always included in the supply)

Minimum supply always includes:

- 1 Unit: TRAC. Absorption Refrigeration Unit.
- ② TRAC/CIB. Control Interface Box.
- 3 DAB. Data Acquisition Board.
- TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software.
- **⑤** Cables and Accessories, for normal operation.
- 6 Manuals.
- * <u>IMPORTANT:</u> Under <u>TRAC</u> we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

$\underline{\textbf{Optional items}} \text{ (supplied under specific order)}$

a) Industrial configuration

- PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):
 - PCL-PI. PLC Module.
 - TRAC/PLC-SOF. PLC Control Software.

b) Technical and Vocational configuration

- ® TRAC/CAI. Computer Aided Instruction Software System.
- **③** TRAC/FSS. Faults Simulation System.

c) <u>Higher Education and/or Technical and Vocational Education configuration</u>

TRAC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

d) Multipost Expansions options

- 1 Mini ESN. EDIBON Mini Scada-Net System.
- @ ESN. EDIBON Scada-Net System.

Page 15 www.edibon.com

TENDER SPECIFICATIONS (for main items)

① TRAC. Unit:

Anodized aluminium structure and panels in painted steel.

Main metallic elements in stainless steel.

Diagram in the front panel with similar distribution to the elements in the real unit.

This unit is provided with a dual power source (heat source) of LPG and electrical resistance.

Condenser: finned exchanger.

Evaporator.

Heat exchanger.

Absorption tank.

Absorber.

Cooling compartment or tank with temperature sensor.

Generator or heater: possibility to select the heat source between an electrical resistance or LPG.

To work with LPG:

Burner and piezoelectric igniter: to ignite the flame of fuel. Three stages gas manual control.

Pressure regulator with manometer (range 0-3 bar) to regulate the LPG inlet pressure to the generator.

To work with an electrical resistance:

Electrical heater: 230V, 125 W. Control of supplied power from the computer (SCADA software).

6 Temperature sensors distributed at key points of the unit.

Sensors of power, current and voltage consumed by the electrical resistor.

Regarding safety, the unit is perfectly watertight to avoid ammonia leakages.

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Optional accessory: (not included in the minimum supply).

-TRAC-PS. Solar Panel to work with the TRAC unit.

② TRAC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel.

The unit control elements are permanently computer controlled.

Simultaneous visualization in the computer of all parameters involved in the process.

Calibration of all sensors involved in the process.

Real time curves representation about system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.

Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

3 DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Data acquisition board (National Instruments) to be placed in a computer slot.

Analog input: Channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).

Analog output: Channels=2. Resolution=16 bits, 1 in 65536.

Digital Input/Output: Channels=24 inputs/outputs.

@ TRAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with the industry standards.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

 $\label{lem:calibration} Calibration \ system \ for \ the \ sensors \ involved \ in \ the \ process.$

It allows the registration of the alarms state and the graphic representation in real time.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

⑤ Cables and Accessories, for normal operation.

Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Page 16 www.edibon.com

Exercises and Practical Possibilities to be done with Main Items

- 1.-Demonstration of the refrigeration process.
- 2.-Demonstration of the vapour absorption refrigeration cycle and visualization of the most important processes.
- 3.-Familiarisation with the individual components of the absorption refrigeration unit.
- 4.-Operation of a gas absorption refrigeration unit using either electricity or LPG as the heat source.
- 5.-Comparison of the refrigeration temperature obtained using LPG or an electrical resistance as a heat source.
- 6.-Measurement of the electrical power.
- 7.-Influence of the electrical power in the refrigeration temperature obtained.
- 8.-Measurement of the temperature in the main points of the absorption refrigeration process.

Additional practical possibilities:

9.- Sensors calibration.

Other possibilities to be done with this Unit:

10.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

11.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc, in real time.

- 12.-The Computer Control System with SCADA allows a real industrial simulation.
- 13.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 14.-This unit can be used for doing applied research.
- 15.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 16.-Control of the TRAC unit process through the control interface box without the computer.
- 17.-Visualization of all the sensors values used in the TRAC unit process.
- By using PLC-Pl additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

TENDER SPECIFICATIONS (for optional items)

a) Industrial configuration

PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software): -PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Digital inputs(X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.

Analog inputs block: 16 Analog inputs.
Analog outputs block: 4 Analog outputs.

Touch screen.

High-speed scan of 0.32 µsec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.

Digital inputs/outputs and analog inputs/outputs Panasonic modules.

-TRAC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

Practices to be done with PLC-PI:

- 1.- Control of the TRAC unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the TRAC unit process.
- 3.- Calibration of all sensors included in the TRAC unit process.
- 4.- Hand on of all the actuators involved in the TRAC unit process.
- 5. Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
- 6.- Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for TRAC unit.
- 9.- PLC structure.
- 10.- PLC inputs and outputs configuration.
- 11.- PLC configuration possibilities.
- 12.- PLC programming languages.
- 13.- PLC different programming standard languages.
- 14.- New configuration and development of new process.
- 15.- Hand on an established process.
- 16.- To visualize and see the results and to make comparisons with the TRAC unit process.
- 17.- Possibility of creating new process in relation with the TRAC unit.
- 18.- PLC Programming exercises.
- 19.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

® TRAC/CAI. Computer Aided Instruction Software System.

This complete package consists on an Instructor Software (INS/ SOF) totally integrated with the Student Software (TRAC/SOF).

-INS/SOF. Classroom Management Software (Instructor Software):

The Instructor can:

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Print reports.

Develop own examinations.

 $Detect \, student's \, progress \, and \, difficulties.$

-TRAC/SOF. Computer Aided Instruction Software (Student Software):

It explains how to use the unit, run the experiments and what to do at any moment.

This Software contains:

Theory.

Exercises.

Guided Practices.

Exams.

TRAC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit.

The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

Page 18 www.edibon.com

c) Higher Education and/or Technical and Vocational Education configuration

TRAC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL will perform the calculations.

CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

d) Multipost Expansions options

Mini ESN. EDIBON Mini Scada-Net System.

EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The Mini ESN system consists on the adaptation of any EDIBON computer controlled unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

- -It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- -Open Control + Multicontrol + Real Time Control + Multi Student Post.
- -Instructor controls and explains to all students at the same time.
- -Any user/student can work doing "real time" control/multicontrol and visualisation.
- -Instructor can see in the computer what any user/student is doing in the unit.
- -Continuous communication between the instructor and all the users/students connected.

Main advantages:

- -It allows an easier and quicker understanding.
- -This system allows you can safe time and cost.
- -Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

- -Instructor's computer.
- -Students' computers.
- -Local Network.
- -Unit-Control Interface adaptation.
- -Unit Software adaptation.
- -Webcam
- -Mini ESN Software to control the whole system.
- -Cables and accessories required for a normal operation.

*Specifications subject to change without previous notice, due to the convenience of improvements of the product.

C/Del Agua, 14. Polígono Industrial San José de Valderas.

28918 LEGANÉS. (Madrid). SPAIN.

Phone: 34-91-6199363 FAX: 34-91-6198647

E-mail: edibon@edibon.com WEB site: www.edibon.com

Issue: ED01/13 Date: August/2013

K	E٢	ΚĿ	:SE	Ν	IAI	IV	E: