Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here:
"EEEC" is a laboratory-scale unit designed to study the eolic energy and the influence of some factors on this generation.

Basically it is formed by:
- Tunnel.
- Aerogenerator (with angle-adjustable and with removable and angle-adjustable blades).
- Axial fan.
- Load and Battery Charger Regulator.
- Auxiliary battery charger.
- Battery.
- DC Loads Module.
- Sensors (temperature, speed, DC current, DC voltage).
- EDIBON Computer Control System (SCADA).

An axial fan introduces air in the tunnel. An air speed sensor measures air speed. It is possible to know, in real time, the value of voltage an current given by aerogenerator, measured before and after the regulator.

We can measure the speed of the air, with a sensor placed in the tunnel, and also know the rotational speed of the aerogenerator (r.p.m.). There is one temperature sensor before the rotor, in order to know the temperature for density calculation.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control and Data Acquisition Software Packages, for controlling the process and all parameters involved in the process.

Optional (NOT included in the minimum supply):
- EE-KIT. Kit of Conversion and Consumption Simulation (AC):
 - Single-phase inverter.
 - AC Loads Module:
 - Lamps of 220V-240V, 50-60Hz, 15W; Fan of 230V; and 4 Positions Selector.
 - AC voltage, current and power sensors.
- EE-KIT2. Grid Connection Inverter Kit:
 - Grid Connection Inverter.
 - Energy Generation Simulator.

GENERAL DESCRIPTION

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION

- 1 actuator and 8 sensors controlled from any computer, and working simultaneously.

OPEN CONTROL

MULTICONTROL

REAL TIME CONTROL
Process diagram and unit elements allocation

Axial fan

Tunnel

Aerogenerator

AC Loads Module (optional EE-KIT)

Load and Battery Charger Regulator

DC Loads Module

Inverter (optional EE-KIT)

Battery

Aerogenerator configurations

Aerogenerator with 6 blades

Aerogenerator with 3 blades

Aerogenerator with 2 blades
With this unit there are several options and possibilities:
- Main items: 1, 2, 3, 4, 5 and 6.
- Optional items: 7, 8, 9, 10, 11 and 12.

Let us describe first the main items (1 to 6):

EEEC. Unit:

Anodized aluminium structure and panels in painted steel.

Main metallic elements in stainless steel.

Diagram in the front panel with similar distribution to the elements in the real unit.

Stainless steel tunnel of 2000 x 550 x 550 mm. approx., which includes two transparent windows of 1100 x 200 mm. approx.

Aerogenerator of 6 blades:

- Angle-adjustable aerogenerator: to modify the angle of incidence and simulate different weather conditions.
- Angle-adjustable blades: this unit allows to change the angle of every single blade, as each one embeds its own calibrated protractor. The blades can be adjusted full 360° range.
- Removable blades: it’s possible to set 6, 3 or 2 blades, depending on the experiment.

Power: 60 W.

Aerogenerator diameter: 510 mm.

Starting air speed: 2.0 m/s.

Max. power 60 W (25.7 m/s).

Axial fan with speed variation for the wind simulation, computer controlled:

- 2800 r.p.m.
- Power: 0.37 kW.
- Flow: 5700 m³/h.

Load and Battery Charger Regulator:

Auxiliary battery charger for battery of 12Vdc.

Battery:

- Battery of deep cycle charge.
- Plates with active materials of high density.
- 24 Amp/hour. 12 Vdc.

DC Loads Module:

- Metallic box.
- Diagram in the front panel.
- DC lamps of 12Vdc.
- DC motor of 24-36Vdc.
- Rheostat of 300W.
- 4 Positions Selector.

Sensors:

- Temperature sensor (“J” type).
- Air speed sensor.
- Speed sensor (aerogenerator).
- DC voltage and current sensors (before and after the regulator).

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Optional: (NOT included in the minimum supply). See section “Optional” in page 7.

-EE-KIT. Kit of Conversion and Consumption Simulation (AC).

- Single-phase inverter.
- AC Loads Module:
 - Lamps of 220V-240V, 50-60Hz, 15W; Fan of 230V; and 4 Positions Selector.
- AC voltage, current and power sensors.

-EE-KIT2. Grid Connection Inverter Kit:

- Grid Connection Inverter.
- Energy Generation Simulator.
EEEC/CIB. Control Interface Box:
The Control Interface Box is part of the SCADA system.
Control interface box with process diagram in the front panel and with the same distribution that the different elements located in the unit, for an easy understanding by the student.
All sensors, with their respective signals, are properly manipulated from -10V to +10V. computer output. Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors. Single cable between the control interface box and computer. The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.
Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.
Real time curves representation about system responses.
Storage of all the process data and results in a file.
Graphic representation, in real time, of all the process/system responses.
All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
All the actuators and sensors values and their responses are displayed on only one screen in the computer.
Shield and filtered signals to avoid external interferences.
Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.
Real time computer control for pumps, compressors, resistances, control valves, etc.
Real time computer control for parameters involved in the process simultaneously.
Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

DAB. Data Acquisition Board:
The Data Acquisition board is part of the SCADA system.
PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.
Analog input:
- Number of channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536.
- Sampling rate up to: 250 KS/s (kilo samples per second).
Input range (V) = ±10 V. Data transfers = DMA, interrupts, programmed I/O. DMA channels = 6.
Analog output:
- Number of channels = 2. Resolution = 16 bits, 1 in 65536. Maximum output rate up to: 900 KS/s.
Output range (V) = ±10 V. Data transfers = DMA, interrupts, programmed I/O.
Digital Input/Output:
- Number of channels = 24 inputs/outputs. D0 or DI Sample Clock frequency: 0 to 100 MHz.

EEEC/CCSOF. Computer Control + Data Acquisition + Data Management Software:
The three softwares are part of the SCADA system.
Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards.
Registration and visualization of all process variables in an automatic and simultaneous way.
Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
Management, processing, comparison and storage of data.
Sampling velocity up to 250 KS/s (kilo samples per second).
Calibration system for the sensors involved in the process.
It allows the registration of the alarms state and the graphic representation in real time.
Comparative analysis of the obtained data, after the process and modification of the conditions during the process.
Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.
This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

Cables and Accessories, for normal operation.
Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.
References 1 to 6 are the main items: EEEC + EEEC/CIB + DAB + EEEC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.
1. Study of the aerogenerator operation in function of the wind speed variation.

2. Generator angle of incidence variation.

3. Operation differences using the three available blades configurations (aerogenerator with 6, 3 or 2 blades).

4. Operation differences depending on the angle of the blades.

5. Load variation influence on the aerogenerator.

6. Study of the voltage, power and current.

7. Study of V, I, W in function of different loads.

8. Efficiency experimental determination (depending on: number of blades, angle of the blades, generator’s angle; among others).

9. Wind energy measurement.

10. Familiarization with the regulator parameters.

11. Study of the power generated by the aerogenerator depending on the wind speed.

12. Study of the power generated by the aerogenerator depending on the air incident angle.

13. Connection of loads to direct voltage.

Additional practical possibilities:

Practices to be done with the OPTIONAL KIT “EE-KIT2”:

15. Connection of loads to alternating voltage of 220V.

Practices to be done with the OPTIONAL KIT “EE-KIT2”:

16. Study of the grid utility inverter.

Other possibilities to be done with this Unit:

17. Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

18. Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc., in real time.

20. This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.

21. This unit can be used for doing applied research.

22. This unit can be used for giving training courses to Industries even to other Technical Education Institutions.

23. Control of the EEEC unit process through the control interface box without the computer.

24. Visualization of all the sensors values used in the EEEC unit process.

- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH MAIN ITEMS

REQUIRED SERVICES

- Electrical supply: single phase, 220V/50Hz or 110/60Hz., 5 kVA.
- Computer (PC).

DIMENSIONS & WEIGHTS

EEEC:	Unit:	-Dimensions: 2300 x 630 x 1080 mm. approx.	(90.55 x 24.8 x 42.52 inches approx.)
	-Weight: 120 Kg. approx.	(264 pounds approx.)	
Control-Interface Box: -Dimensions: 490 x 330 x 310 mm. approx.	(19.29 x12.99x12.20 inches approx.)	-Weight: 10 Kg. approx.	(22 pounds approx.)

AVAILABLE VERSIONS

<table>
<thead>
<tr>
<th>Offered in this catalogue:</th>
<th>Offered in other catalogues:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-EEEC. Computer Controlled Wind Energy Unit.</td>
<td>-EEE. Wind Energy Unit.</td>
</tr>
<tr>
<td>-MINI-EEEC. Computer Controlled Wind Energy Basic Unit.</td>
<td>-MINI-EEE. Wind Energy Basic Unit.</td>
</tr>
</tbody>
</table>
EE-KIT. Kit of Conversion and Consumption Simulation (AC):

- Single-phase inverter:
 - Single-phase.
 - 25 kHz switch mode technology.
 - Start-up power of 200%.
 - Short-circuits protection.
 - High temperature protection.
 - Overcharge protection.
 - Operation state LED indicator.
 - Rear connection/disconnection switch.

- AC Loads Module:
 - Metallic box.
 - Diagram in the front panel.
 - Fan of 230V.
 - Lamps of 220V - 240V, 50-60 Hz, 15W.
 - Independent connection for every load with the help of the 4 Positions Selector:
 - With the load selector in position 1, the inverter operates without load.
 - With the load selector in position 2, the fan motor is connected.
 - With the load selector in position 3, one AC lamp is connected.
 - With the load selector in position 4, two AC lamps are connected in parallel.

- AC voltage, current and power sensors.

EE-KIT2. Grid Connection Inverter Kit:

Inverter used for the conversion and injection to the grid of the power generated by a simulated source of renewable energy. The simulated source is a simulator used to obtain a variable power to be injected to the grid.

The operation mode is displayed by means of a LED indicator at the front side of the housing.

It is equipped with extensive safety measures to ensure that it switches off immediately as soon as the AC plug is removed from the wall socket or the public grid fails in operation.

The inverter can be connected to a PC through RS232 communication to display some parameters such as voltage and current inputs, mains voltage and frequency, maximum AC power, Kwh, etc.

- Grid Connection Inverter:
 - Input (DC):
 - Nominal power @ 25°C: 200 W.
 - Maximum power @ 25°C: 250 W.
 - MPP voltage: 40-75V DC.
 - Maximum voltage: 155V DC.
 - Nom. rated current: 4A.
 - Output (AC):
 - Voltage: 85% ~ 110% Un (195-253 V).
 - Nominal power: 140 W.
 - Maximum power/fuse: 2.25 A / 3.15 A.
 - Frequency: 49.5~ 50.5 Hz.

- Energy Generation Simulator.
SOFTWARE MAIN SCREENS

SCADA

Main Screen

Main software operation possibilities.

II Sensors displays, real time values, and extra output parameters. Sensors: ST-1 = Temperature sensor. SVA-1 = Air speed sensor. SV-1 = Speed sensor (aerogenerator). DC Load Module: I_DC = current sensor, V_DC = voltage sensor. AC Load Module: I_AC = current sensor, V_AC = voltage sensor, W_AC = power sensor.

IV Channel selection and other plot parameters.

V Real time graphics and tables displays.

Software for Sensors Calibration

By using a free of charge code, the teacher and the students can calibrate the unit. The teacher can recover his/her own calibration by using the EDIBON code that we give free of charge.
Starting of the air generation in the tunnel. Graphic representation of the air speed in the tunnel.

Behaviour of the aerogenerator according to the air speed variation.
Some typical results

Graphic representation of a 15W light bulb consumption, corresponding to the AC Load Module.

Graphic representation of the consumption of light bulbs 1 and 2, corresponding to the AC Load Module.
Some typical results

Graphic representation of the data saved during the execution process.
Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 12. All these items try to give more possibilities for:

a) Industrial configuration. (PLC)
b) Technical and Vocational Education configuration. (CAI and FSS)
c) Higher Education and/or Technical and Vocational Education configuration. (CAL)
d) Multipost Expansions options. (Mini ESN and ESN)

a) Industrial configuration

1. PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):
 - PLC-PI. PLC Module:
 Metallic box.
 Circuit diagram in the module front panel.
 Front panel:
 Digital inputs(X) and Digital outputs (Y) block:
 16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).
 14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).
 Analog inputs block:
 16 Analog inputs (-10 V to + 10 V) (through SCSI connector).
 Analog outputs block:
 4 Analog outputs (-10 V to + 10 V) (through SCSI connector).
 Touch screen:
 Back panel:
 Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.
 Inside:
 Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable.
 Panasonic PLC:
 High-speed scan of 0.32 \(\mu \)sec. for a basic instruction.
 Program capacity of 32 Ksteps, with a sufficient comment area.
 Power supply input (100 to 240 V AC).
 DC input: 16 (24 V DC).
 Relay output: 14.
 High-speed counter.
 Multi-point PID control.
 - Digital inputs/outputs and analog inputs/outputs Panasonic modules.
 - Communication RS232 wire to computer (PC).
 - Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.) Weight: 30 Kg. approx. (66 pounds approx.)

2. PLC-SOF. PLC Control Software:
 For this particular unit, always included with PLC supply.
 The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Wind Energy Unit (EEEC).

 Practices to be done with PLC-PI:

1. Control of the EEEC unit process through the control interface box without the computer.
2. Visualization of all the sensors values used in the EEEC unit process.
3. Calibration of all sensors included in the EEEC unit process.
4. Hand on of all the actuators involved in the EEEC unit process.
5. Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
6. Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
7. PLC hardware general use and manipulation.
8. PLC process application for EEEC unit.
9. PLC structure.
10. PLC inputs and outputs configuration.
11. PLC configuration possibilities.
12. PLC programming languages.
13. PLC different programming standard languages.
14. New configuration and development of new process.
15. Hand on an established process.
16. To visualize and see the results and to make comparisons with the EEEC unit process.
17. Possibility of creating new process in relation with the EEEC unit.
18. PLC Programming exercises.
19. Own PLC applications in accordance with teacher and student requirements.
b) Technical and Vocational Education configuration

EEEC/CAI. Computer Aided Instruction Software System.

This complete software package includes two Softwares: the INS/SOF. Classroom Management Software (Instructor Software) and the EEEC/SOF. Computer Aided Instruction Software (Student Software).

This software is optional and can be used additionally to items (1 to 6).

This complete software package consists on an Instructor Software (INS/SOF) totally integrated with the Student Software (EEEC/SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- INS/SOF. Classroom Management Software (Instructor Software):
 - The Instructor can:
 - Organize Students by Classes and Groups.
 - Create easily new entries or delete them.
 - Create data bases with student information.
 - Analyze results and make statistical comparisons.
 - Generate and print reports.
 - Detect student’s progress and difficulties.
 - ...and many other facilities.

- EEEC/SOF. Computer Aided Instruction Software (Student Software):
 It explains how to use the unit, run the experiments and what to do at any moment.
 This Software contains:
 - Theory.
 - Exercises.
 - Guided Practices.
 - Exams.
 For more information see CAI catalogue. Click on the following link:

EEEC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

 - Faults affecting the sensors measurement:
 - An incorrect calibration is applied to them.
 - Non-linearity.

 - Faults affecting the actuators:
 - Actuators channels interchange at any time during the program execution.
 - Response reduction of an actuator.

 - Faults in the controls execution:
 - Inversion of the performance in ON/OFF controls.
 - Reduction or increase of the calculated total response.
 - The action of some controls is annulled.

 - On/off faults:
 - Several on/off faults can be included.

For more information see FSS catalogue. Click on the following link:
c) Higher Education and/or Technical and Vocational Education configuration

Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The Mini ESN system consists on the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing “real time” control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

Mini Scada-Net System.

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

Minimum supply always includes:

<table>
<thead>
<tr>
<th>Main items (always included in the supply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Unit: EEEC. Wind Energy Unit.</td>
</tr>
<tr>
<td>2 EEEC/CIB. Control Interface Box.</td>
</tr>
<tr>
<td>3 DAB. Data Acquisition Board.</td>
</tr>
<tr>
<td>4 EEEC/CCSOF. Computer Control + Data Acquisition + Data Management Software.</td>
</tr>
<tr>
<td>5 Cables and Accessories, for normal operation.</td>
</tr>
<tr>
<td>6 Manuals.</td>
</tr>
</tbody>
</table>

*IMPORTANT: Under EEEC, we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

Optional items (supplied under specific order)

<table>
<thead>
<tr>
<th>Optional items (supplied under specific order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Industrial configuration</td>
</tr>
<tr>
<td>7 PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):</td>
</tr>
<tr>
<td>- PCL-PI. PLC Module.</td>
</tr>
<tr>
<td>- EEEC/PLC-SOF. PLC Control Software.</td>
</tr>
<tr>
<td>b) Technical and Vocational configuration</td>
</tr>
<tr>
<td>8 EEEC/CAI. Computer Aided Instruction Software System.</td>
</tr>
<tr>
<td>9 EEEC/FSS. Faults Simulation System.</td>
</tr>
<tr>
<td>c) Higher Education and/or Technical and Vocational Education configuration</td>
</tr>
<tr>
<td>10 EEEC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).</td>
</tr>
<tr>
<td>d) Multipost Expansions options</td>
</tr>
<tr>
<td>11 Mini ESN. EDIBON Mini Scada-Net System.</td>
</tr>
<tr>
<td>12 ESN. EDIBON Scada-Net System.</td>
</tr>
</tbody>
</table>
EEEC. Unit:

Anodized aluminum panel and panels in painted steel.
Main metallic elements in stainless steel.

Diagram in the front panel with similar distribution to the elements in the real unit.
Stainless steel tunnel of 2000 x 550 x 550 mm. approx., which includes two transparent windows of 1100 x 200 mm. approx.
Aerogenerator of 6 blades:
Angle-adjustable aerogenerator: to modify the angle of incidence and simulate different weather conditions.
Angle-adjustable blades: this unit allows to change the angle of every single blade, as each one embeds its own calibrated protractor. The blades can be adjusted full 360° range.
Removable blades: it’s possible to set 6, 3 or 2 blades, depending on the experiment.

Power: 60 W.
Aerogenerator diameter: 510 mm.
Starting air speed: 2 m/s.
Max. power 60 W (25.7 m/s).

Axial fan with speed variation for the wind simulation, computer controlled: 2800 r.p.m.
Power: 0.37 kW.
Flow: 5700 m³/h.

Load and Battery Charger Regulator:

Auxiliary battery charger for battery of 12Vdc.

Battery:
Batteries of deep cycle charge.
Places with active materials of high density.
24 Amp/hour. 12 Vdc.

DC Loads Module:
Metallic box.
Diagram in the front panel.
DC lamps of 12Vdc.
DC motor of 24-36Vdc.
Rheostat of 300W.
4 Positions Selector.

Sensors:
Temperature sensor (‘J’ type).
Air speed sensor.
Speed sensor (aerogenerator).
DC voltage and current sensors (before and after the regulator).

The complete unit includes as well:
Advanced Real-Time SCADA.
Open Control + Multicontrol + Real-Time Control.
Specialized EDIBON Control Software based on Labview.
National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Digital Input/Output: Channels=24 inputs/outputs.
Analog input: Channels=16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).

EEEC/CIB. Control Interface Box:
The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel.
The unit control elements are permanently computer controlled.
Simultaneous visualization in the computer of all parameters involved in the process.
Calibration of all sensors involved in the process.
Real time curves representation about system responses.
All the actuators’ values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
Shield and filtered signals to avoid external interferences.
Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.
Real time computer control for parameters involved in the process simultaneously.
Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

DAB. Data Acquisition Board:
The Data Acquisition board is part of the SCADA system.
PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.

EEEC/CCOF. Computer Control + Data Acquisition + Data Management Software:
The three softwares are part of the SCADA system.
Compatible with the industry standards.
Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
Management, processing, comparison and storage of data.
Sampling velocity up to 250 KS/s (kilo samples per second).
Calibration system for the sensors involved in the process.
It allows the registration of the alarms state and the graphic representation in real time.
Open software, allowing the teacher to modify texts, instructions. Teacher’s and student’s passwords to facilitate the teacher’s control on the student, and allowing the access to different work levels.

Cables and Accessories, for normal operation.

Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.
1. Study of the aerogenerator operation in function of the wind speed variation.
2. Generator angle of incidence variation.
3. Operation differences using the three available blades configurations (aerogenerator with 6, 3 or 2 blades).
4. Operation differences depending on the angle of the blades.
5. Load variation influence on the aerogenerator.
6. Study of the voltage, power and current.
7. Study of V, I, W in function of different loads.
8. Efficiency experimental determination (depending on: number of blades, angle of the blades, generator’s angle; among others).
9. Wind energy measurement.
10. Familiarization with the regulator parameters.
11. Study of the power generated by the aerogenerator depending on the wind speed.
12. Study of the power generated by the aerogenerator depending on the air incident angle.
13. Connection of loads to direct voltage.

Additional practical possibilities:

Practices to be done with the OPTIONAL KIT "EE-KIT":

15. Connection of loads to alternating voltage of 220V.

Practices to be done with the OPTIONAL KIT "EE-KIT2":

16. Study of the grid utility inverter.

Other possibilities to be done with this Unit:

17. Many students view results simultaneously.
 To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
18. Open Control, Multicontrol and Real Time Control.
 This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc., in real time.
20. This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
21. This unit can be used for doing applied research.
22. This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
23. Control of the EEEC unit process through the control interface box without the computer.
24. Visualization of all the sensors values used in the EEEC unit process.
 - By using PLC-PI additional 19 more exercises can be done.
 - Several other exercises can be done and designed by the user.
PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

- **PLC-PI. PLC Module:**

 Metallic box.
 Circuit diagram in the module front panel.
 Digital inputs (X) and Digital outputs (Y) block: 16 Digital inputs, 14 Digital outputs.
 Analog inputs block: 16 Analog inputs.
 Analog outputs block: 4 Analog outputs.
 Touch screen.

- **Panasonic PLC:**

 High-speed scan of 0.32 \(\mu \)sec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.
 Digital inputs/outputs and analog inputs/outputs Panasonic modules.

- **EEEC/PLC-SOF. PLC Control Software:**

 For this particular unit, always included with PLC supply.

 Practices to be done with PLC-PI:
 1. Control of the EEEC unit process through the control interface box without the computer.
 2. Visualization of all the sensors values used in the EEEC unit process.
 3. Calibration of all sensors included in the EEEC unit process.
 4. Hand on of all the actuators involved in the EEEC unit process.
 5. Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
 6. Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
 7. PLC hardware general use and manipulation.
 8. PLC process application for EEEC unit.
 9. PLC structure.
 10. PLC inputs and outputs configuration.
 11. PLC configuration possibilities.
 12. PLC programming languages.
 13. PLC different programming standard languages.
 14. New configuration and development of new process.
 15. Hand on an established process.
 16. To visualize and see the results and to make comparisons with the EEEC unit process.
 17. Possibility of creating new process in relation with the EEEC unit.
 18. PLC Programming exercises.
 19. Own PLC applications in accordance with teacher and student requirements.

EEEC/CAI. Computer Aided Instruction Software System.

This complete software package consists on an Instructor Software ([INS/SOF]) totally integrated with the Student Software (EEEC/SOF).

- **INS/SOF. Classroom Management Software (Instructor Software):**

 The Instructor can:
 - Organize Students by Classes and Groups.
 - Create easily new entries or delete them.
 - Create data bases with student information.
 - Analyze results and make statistical comparisons.
 - Generate and print reports.
 - Detect student’s progress and difficulties.

- **EEEC/SOF. Computer Aided Instruction Software (Student Software):**

 It explains how to use the unit, run the experiments and what to do at any moment.

 This Software contains:
 - Theory.
 - Exercises.
 - Guided Practices.
 - Exams.

EEEC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit.

The “FAULTS” mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

- **Faults affecting the sensors measurement:**
 - An incorrect calibration is applied to them.
 - Non-linearity.

- **Faults affecting the actuators:**
 - Actuators channels interchange at any time during the program execution.
 - Response reduction of an actuator.

- **Faults in the controls execution:**
 - Inversion of the performance in ON/OFF controls.
 - Reduction or increase of the calculated total response.
 - The action of some controls is annulled.

- **On/off faults:**
 - Several on/off faults can be included.
c) Higher Education and/or Technical and Vocational Education configuration

(1) EEC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use.

CAL is a class assistant that helps in doing the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL computes the value of all the variables involved and performs the calculations.

It allows to plot and print the results. Within the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

(2) Mini ESN. EDIBON Mini Scada-Net System.

EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The Mini ESN system consists on the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:
- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:
- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:
- This system is used with a Computer Controlled Unit.
- Instructor’s computer.
- Students’ computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- Mini ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

Specifications subject to change without previous notice, due to the convenience of improvements of the product.