
Computer Controlled Steam Turbine,

(Computer not included in the supply)

🛈 Unit: TTVC. Steam Turbine

Key features:

- Advanced Real-Time SCADA.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on Labview.
- National Instruments Data Acquisition board (250 KS/s , kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional CAL software helps the user perform calculations and comprehend the results.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here:

OPEN CONTROL MULTICONTROL REAL TIME CONTROL

Worlddidac Quality Charter Certificate (Worlddidac Member)

ISO 9000: Quality Management (for Design, Manufacturing, Commercialization and After-sales service)

Page 1

You

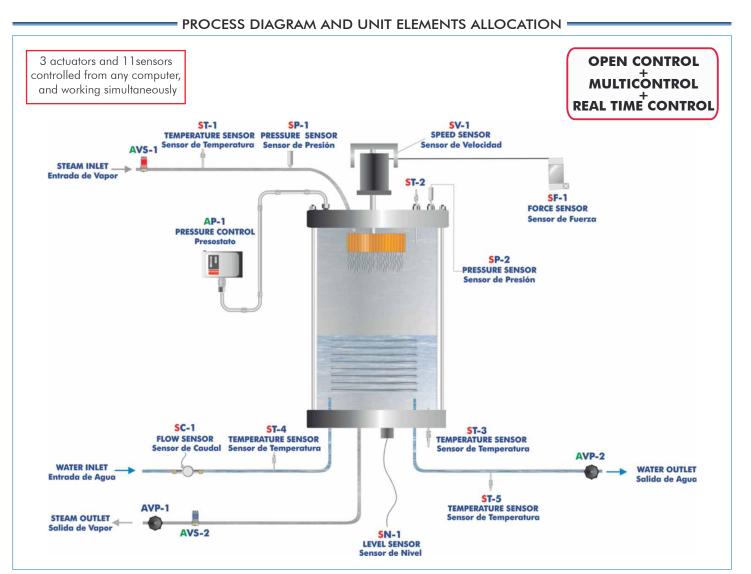
Tube

The TTVC Unit, developed by EDIBON, consists of a steam turbine which works in single stage. It has an injection nozzle with an incidence angle of 20° referred to the rotation plane.

To work with the TTVC unit turbine, it is necessary to have a steam generator in the laboratory. It must have a production of 8 kg/h at minimum pressures of 6 bar. If you have not the suitable generator in the laboratory, EDIBON can offer its Steam Generator (TGW-kWA) suitable to work with this unit.

The unit steam inlet has two solenoid electrovalves mounted in series, that allows a safe work of the installation. The excitation of both valves causes the opening and the steam to reach the turbine.

The steam affects the turbine blades by means of an injector which generates a work on them and which causes the turbine rotation. According to the energy which the steam has, there will be more or less work in the turbine.


The turbine exhaust gases, almost without energy, are collected into a glass chamber, which is called condenser. Here, the steams are condensed to water by a coil action, through which cold water circulates. This cold water suffers a temperature increase, which will be shown to the student as another generation possibility.

To measure the torque, there is a band brake which acts on a pulley which rotates joined to the turbine. The band end is connected to a load cell-force sensor. By means of the action on a manual screw, the band is tensed, braking as it is required, so the load given by the turbine can be determined.

The turbine rotation speed is measured by a speed sensor.

The steam flow is an important variable. It is measured by means of the condensed steam volume during a determined time.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control and Data Acquisition Software Packages, for controlling the process and all parameters involved in the process.

COMPLETE TECHNICAL SPECIFICATIONS (for main items)

With this unit there are several options and possibilities:

- Main items: 1, 2, 3, 4, 5 and 6.

- Optional items: 7, 8, 9, 10, 11 and 12.

Let us describe first the main items (1 to 6):

1) TTVC. Unit:

Bench top unit mounted on an anodized aluminium structure and panels in painted steel.

Main metallic elements in stainless steel.

Diagram in the front panel with similar distribution to the elements in the real unit.

Steam turbine mounted on a vertical shaft:

Axial flow turbine type De Laval, of single stage.

Maximum speed: 20,000 rpm.

Power:10W.

Nozzle:

Inlet diameter: 1.5 mm. Outlet diameter: 3 mm.

Discharge angle: 20°.

Turbine rotor:

External diameter: 84 mm. Internal diameter: 45 mm.

Number of blades: 25.

Brake:

Type friction by means of a band. Pulley diameter: 50 mm.

Effective radius: 27 mm.

Water cooled condenser: glass chamber. Into it, there is a coil through which the cold water circulates.

Sensors:

Pressure sensor for inlet steam, range: 0-10 bar.

Pressure sensor in the condenser, range: -1 bar to +1.6 bar.

Load cell. Force sensor, range: 0-20 N.

Speed sensor, range: 0-20,000 r.p.m.

Flow sensor for refrigeration water, range: 0.2-6.5 l./min.

Level sensor to measure the condensate volume or flow.

5 Temperature sensors in different points of the unit.

2 Solenoid valves, mounted in series, computer controlled, for system security.

1 Solenoid valve, computer controlled, to evacuate the condenser.

Turbine overspeed protection by means of the control software.

Condenser overpressure switch.

Safety protection methacrylate screens.

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s , kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

TTVC. Unit

②TTVC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

<u>Control interface box with process diagram in the front panel</u> and with the same distribution that the different elements located in the unit, for an easy understanding by the student.

All sensors, with their respective signals, are properly manipulated from -10V. to +10V. computer output. Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors. Sinale cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.

Simultaneous visualization in the computer of all parameters involved in the process.

Calibration of all sensors involved in the process.

Real time curves representation about system responses.

Storage of all the process data and results in a file.

Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

All the actuators and sensors values and their responses are displayed on only one screen in the computer.

Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.

Real time computer control for pumps, compressors, resistances, control valves, etc.

Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③ DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI. Analog input:

Number of **channels** = 16 single-ended or 8 differential. **Resolution** = 16 bits, 1 in 65536. **Sampling rate up to:** <u>250 KS/s (kilo samples per second)</u>.

Input range (V)=±10 V. Data transfers=DMA, interrupts, programmed I/0. DMA channels=6.

Analog output:

Number of **channels=2**. **Resolution=16 bits**, 1 in 65536. Maximum output rate up to: 833 KS/s. Output range(V)= \pm 10 V. Data transfers=DMA, interrupts, programmed I/0.

Digital Input/Output:

Number of **channels=24 inputs/outputs**. D0 or DI Sample Clock frequency: 0 to 1 MHz. Timing: Number of **Counter/timers=2**. Resolution: Counter/timers: 32 bits.

@TTVC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. **Compatible with the industry standards**.

Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Comparative analysis of the obtained data, after the process and modification of the conditions during the process.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

© Cables and Accessories, for normal operation.

@Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

* References 1 to 6 are the main items: TTVC + TTVC/CIB + DAB + TTVC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

TTVC/CIB

DAB

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH MAIN ITEMS

- 1.- Study of Rankine Cycle.
- 2.- Calculation of the real flow of condensate.
- 3.- Determination of the injector discharge coefficient.
- 4.- Obtaining the characteristic curves of the steam turbine.
- 5.- Turbine efficiency.
- 6.- Thermal balances.
- 7.- Determination of friction losses at various exhaust pressures.
- 8.- Determination of torque, power and specific steam consumption when the turbine operates at constant inlet pressure but varying exhaust pressure.
- 9.- Determination of torque, power and specific steam consumption when the turbine operates at constant exhaust pressure but varying inlet pressure.
- 10.-Determination of power-heat ratio when it is used as a back pressure turbine.
- 11.-Determination of thermal efficiency.
- 12.-Study of the specific steam consumption of the turbine.

Additional practical possibilities:

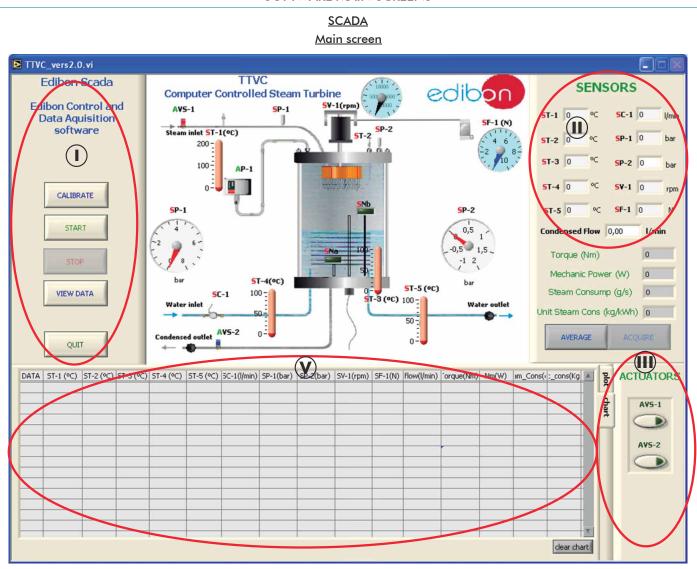
- 13.-Sensors calibration.
- 14.-Determination of Isentropic efficiency.
- Other possibilities to be done with this Unit:
- 15.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

REQUIRED SERVICES -

- Electrical supply: single-phase, 220V./150Hz or 110V./60Hz.
- Water supply.
- Steam supply (EDIBON Steam generator TGV-6kWA, or similar).
- Computer (PC).

16.-Open Control, Multicontrol and Real Time Control.


This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc in real time.

- 17.-The Computer Control System with SCADA allows a real industrial simulation.
- 18.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 19.-This unit can be used for doing applied research.
- 20.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 21.-Control of the TTVC unit process through the control interface box without the computer.
- 22.-Visualization of all the sensors values used in the TTVC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

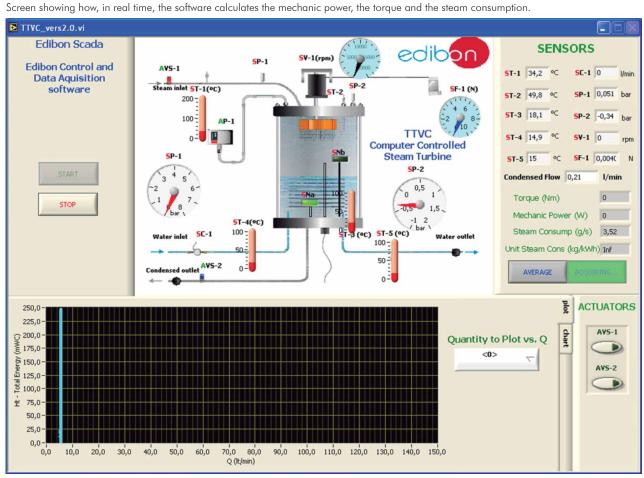
- DIMENSIONS & WEIGHTS -

TTVC:		
Unit: -Di		700 x 600 x 800mm.approx. (27.55 x 23.62 x 31.49 inches approx.).
-We		60 Kg. approx. (132.27 pounds approx.).
Control Interface Box: -Di		490 x 330 x 310 mm. approx. (19.29x12.99x12.20 inches approx.).
-\\\e	0	10 Kg. approx. (22 pounds approx.).

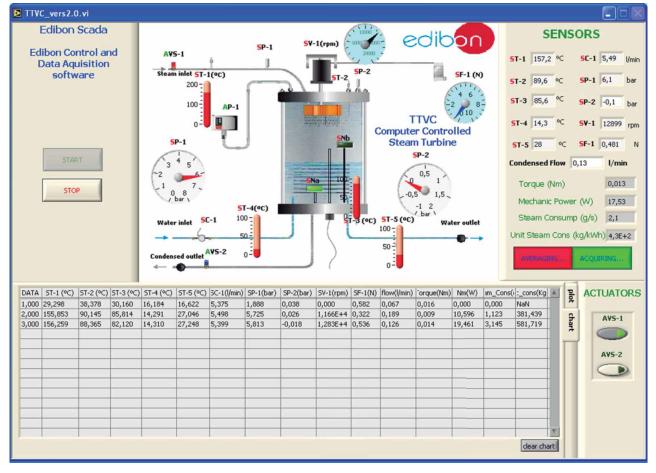
SOFTWARE MAIN SCREENS -

(I) Main software operation possibilities.

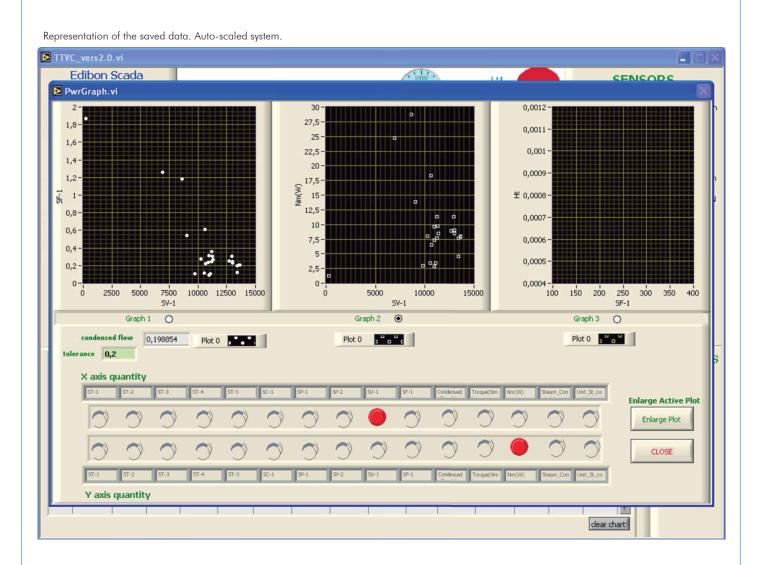
(II) Sensors displays, real time values, and extra output parameters. Sensors: ST= Temperature sensor. SC= Flow sensor. SP= Pressure sensor. SV= Speed sensor. SF= Force sensor.


Actuators controls. Actuators: AVS = Solenoid valve.

Ochannel selection and other plot parameters.


• Real time graphics and tables displays.

Software for Sensors Calibration


Restore Setting Instructor	Instructor	2 MULT	ICALIBRATE							
Analog Input Channel			м	JLTICAL	IBRATE		AB-1			
Sensor Name ST-8				Signed	Technical Su	AR-1				
Calibration units C Full Scale 150	4 5 6 3 1 7 28	Reference Select	Reference	e Value 2113	Full Scale 1	olerance (%)		Port 0	Port 1	Port 2
Gain () 95,4198 Offset () 1,67443	19	Referen	Sensors	Volts	Calibrated	Err (%)		[Restore	istore Instructi
Least Squares Fit PTA 10 Volts 0,9619 Calibrated 93,46 ENTER EXIT EXIT & SAVE			ST-1	0,2046	22,3821	0,82		GAIN	OFFSET	ρ
	(-) 0		ST-2	0,2292	23,483	0,28	ST-1	97,7605	(2,3804	0
	AVE-1		ST-3	0,2353	23,1522	0,05	ST-2	97,7997	() 1,0627	0
	4 5 6		ST-4			0,01	ST-3	95,8345	0,6041	0
	3, 1, 7				13,1629	10,04	ST-4	96,6188	()(0,9823	0
	28		SCC-1	-5,2792	172,5164	149,31		93,9573		
	19			-0,2362	-22,6609	45,87	SCC-1	162,04	1027,9537	
	0 10		SC-1	-0,1774	0,0319629	23,17		97,4967	(),3678	
					-60,4623	63,67	S0-1	0,679363	0,1525	
	0				0,4208	22,78		41,2123	-49,4113	
				-0,2529	-0,2529	23,46		0,27089	0,4817	
				-0,2063	-0,1178	23,32				
				-0,2581	-226,9384	250,14		0,417958		
ing a free of charge code, the teacher and the s calibrate the unit.				-0,3634	-0,3634	23,57				
	d the students			-0,275	-0,275	,23,48				
			1.1	-0,2005	-0,2005	23,41				
			Select all		Data taken	0	J		0	
eacher can recover his/her own calibration ON code that we give free of charge.	n by using the		E	INTER	DONE					

Screen showing the turbine software automatically working. Data acquisition at constant flow of condensed.

Some typical results

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 12.

All these items try to give more possibilities for:

a) Industrial configuration. (PLC)

b) Technical and Vocational Education configuration. (CAI and FSS)

c) Higher Education and/or Technical and Vocational Education configuration. (CAL)

d) Multipost Expansions options. (Mini ESN and ESN)

a) Industrial configuration

②PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

PLC-PI. PLC Module:

Metallic box

Circuit diagram in the module front panel.

Front panel:

Digital inputs(X) and Digital outputs (Y) block:

16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).
 14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

Analog inputs block: 16 Analog inputs (-10 V. to + 10 V.) (through SCSI connector).

Analog outputs block:

4 Analog outputs (-10 V. to + 10 V.) (through SCSI connector).

Touch screen:

High visibility and multiple functions. Display of a highly visible status. Recipe function. Bar graph function. Flow display function. Alarm list. Multi language function. True type fonts.

Back panel:

Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.

Inside

Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable. Panasonic PLC:

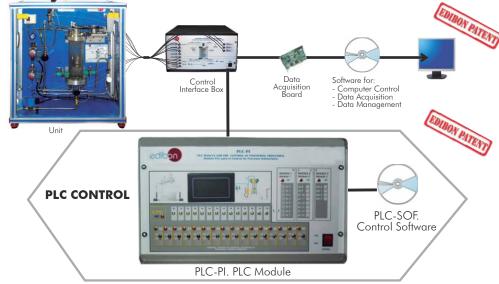
High-speed scan of 0.32 µsec. for a basic instruction.

Program capacity of 32 Ksteps, with a sufficient comment area. Power supply input (100 to 240 VAC).

- DC input: 16 (24 V DC). Relay output: 14.

High-speed counter. Multi-point PID control

Digital inputs/outputs and analog inputs/outputs Panasonic modules.


Communication RS232 wire to computer (PC).

Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.). Weight: 30 Kg. approx. (66 pounds approx.).

-TTVC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Steam Turbine (TTVC).

Practices to be done with PLC-PI:

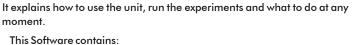
- Control of the TTVC unit process through the control interface box 1.without the computer.
- Visualization of all the sensors values used in the TTVC unit process. 2.-
- 3.- Calibration of all sensors included in the TTVC unit process.
- 4.- Hand on of all the actuators involved in the TTVC unit process.
- Realization of different experiments, in automatic way, without having in 5.front the unit. (This experiment can be decided previously).
- 6.-Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for TTVC unit.
- 9.- PLC structure.

- 10.- PLC inputs and outputs configuration.
 - 11.- PLC configuration possibilities.
 - 12.- PLC programming languages.
 - 13.- PLC different programming standard languages.
 - 14.- New configuration and development of new process.
 - 15.- Hand on an established process.
 - 16.- To visualize and see the results and to make comparisons with the TTVC unit process.
 - 17.- Possibility of creating new process in relation with the TTVC unit.
 - 18.- PLC Programming exercises.
 - 19.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

⑧ TTVC/CAI. Computer Aided Instruction Software System.

This complete package included two Softwares; the INS/ SOF. Classroom Management Software (Instructor Software) and the TTVC/SOF. Computer Aided Instruction Software (Student Software).


This software is optional and can be used additionally to items (1 to 6).

This complete package consists on an Instructor Software (INS/ SOF) totally integrated with the Student Software (TTVC/SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students. These, on the other hand, get a virtual instructor who helps them to deal with all the information on the subject of study.

- INS/SOF. Classroom Management Software (Instructor Software): The Instructor can:
 - Organize Students by Classes and Groups.
 - Create easily new entries or delete them.
 - Create data bases with student information.
 - Analyze results and make statistical comparisons.

Print reports.

- Develop own examinations.
- Detect student's progress and difficulties.
- ...and many other facilities.
- TTVC/SOF. Computer Aided Instruction Software (Student Software):

- Theory.
- Exercises.

Guided Practices.

Exams

For more information see CAI catalogue. Click on the following link: www.edibon.com/products/catalogues/en/CAI.pdf

Student Software

Example of some screens

TTVC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level

The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators canals interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

For more information see **FSS** catalogue. Click on the following link: www.edibon.com/products/catalogues/en/FSS.pdf

FALL IS ENABLED WELCOME FSS FAULTS CONFIGURATION: ENABLED CHANCE STATE START SET ERROR CALIBRATION CHANGE ORDER INSTRUCTOR 5 7 10 13 11 15 8 3 12 2 4 9 14 6 1 edibor FALL TS ENABLED R CALIBRATIO Unit 2 C 2 C 2 C FAULT NP 1 . AN5-2 CHANGE ORDER Fault Orde 5 7 10 13 11 15 8 3 12 2 4 9 14 6 1 OK

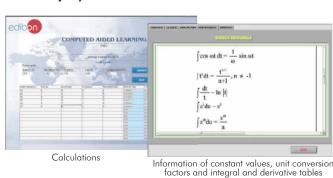
c) <u>Higher Education and/or Technical and Vocational Education configuration</u>

OTTVC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use, specifically developed by EDIBON. It is very useful for Higher Education level.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL will perform the calculations.


CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

For more information see **CAL** catalogue. Click on the following link: <u>www.edibon.com/products/catalogues/en/CAL.pdf</u>

d) <u>Multipost Expansions options</u>

1) Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

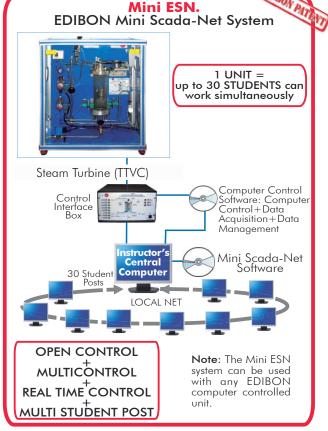
The Mini ESN system consists on the adaptation of any EDIBON computer controlled unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/ students connected.

Main advantages:


- It allows an easier and quicker understanding.
- This system allows you can safe time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

ESN. EDIBON Scada-Net System.

This unit can be integrated, in future, in a Complete Laboratory with many Units and many Students.

For more information see **ESN** catalogue. Click on the following link: <u>www.edibon.com/products/catalogues/en/units/thermodynamicsthermotechnics/esn-thermodynamics/ESN-THERMODYNAMICS.pdf</u>

- ORDER INFORMATION -

Main items (always included in the supply)	Optional items (supplied under specific order) a) <u>Industrial configuration</u>						
Minimum supply always includes:	 PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software): PCL-PI. PLC Module. 						
① Unit: TTVC. Steam Turbine.							
② TTVC/CIB. Control Interface Box.	- TTVC/PLC-SOF. PLC Control Software.						
③ DAB. Data Acquisition Board.							
(4) TTVC/CCSOF. Computer Control + Data Acquisition + Data	 b) <u>Technical and Vocational configuration</u> ITVC/CAI. Computer Aided Instruction Software System. TTVC/FSS. Faults Simulation System. 						
Management Software.							
(5) Cables and Accessories, for normal operation.							
left Manuals.							
	c) Higher Education and/or Technical and Vocational Education configuration						
* <u>IMPORTANT:</u> Under <u>TTVC</u> we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.	TTVC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).						
	d) <u>Multipost Expansions options</u>						
	🛈 Mini ESN. EDIBON Mini Scada-Net System.						
	😢 ESN. EDIBON Scada-Net System.						

TENDER SPECIFICATIONS (for main items)

1) TTVC. Unit: Bench top unit mounted on an anodized aluminium structure and panels in painted steel. Main metallic elements in stainless steel. Diagram in the front panel with similar distribution to the elements in the real unit. Steam turbine mounted on a vertical shaft: Axial flow turbine type De Laval, of single stage. Maximum speed: 20,000 rpm. Power:10W. Nozzle: Inlet diameter: 1.5 mm. Outlet diameter: 3 mm. Discharge angle: 20°. Turbine rotor: External diameter: 84 mm. Internal diameter: 45 mm. Number of blades: 25. Brake. Type friction by means of a band. Pulley diameter: 50 mm. Effective radius: 27 mm. Water cooled condenser: glass chamber. Into it, there is a coil through which the cold water circulates. Sensors: Pressure sensor for inlet steam, range: 0-10 bar. Pressure sensor in the condenser, range: -1 bar to +1.6 bar. Load cell. Force sensor, range: 0-20 N. Speed sensor, range: 0-20,000 r.p.m. Flow sensor for refrigeration water, range: 0.2-6.5 l./min. Level sensor to measure the condensate volume or flow. 5 Temperature sensors in different points of the unit. 2 Solenoid valves, mounted in series, computer controlled, for system security. 1 Solenoid valve, computer controlled, to evacuate the condenser. Turbine overspeed protection by means of the control software. Condenser overpressure switch. Safety protection methacrylate screens. The complete unit includes as well: Advanced Real-Time SCADA. Open Control + Multicontrol + Real-Time Control. Specialized EDIBON Control Software based on Labview. National Instruments Data Acquisition board (250 KS/s, kilo samples per second). Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements. Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time. Capable of doing applied research, real industrial simulation, training courses, etc. Remote operation and control by the user and remote control for EDIBON technical support, are always included. Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software). Designed and manufactured under several quality standards. Optional CAL software helps the user perform calculations and comprehend the results. This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network. **② TTVC/CIB. Control Interface Box:** The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel. The unit control elements are permanently computer controlled. Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process. Real time curves representation about system responses. All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. Shield and filtered signals to avoid external interferences. Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process. Real time computer control for parameters involved in the process simultaneously. Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously. Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software. **③ DAB. Data Acquisition Board:** The Data Acquisition board is part of the SCADA system. PCI Data acquisition board (National Instruments) to be placed in a computer slot. Analog input: Channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second). Analog output: Channels=2. Resolution=16 bits, 1 in 65536. Digital Input/Output: Channels=24 inputs/outputs. ④ TTVC/CCSOF. Computer Control + Data Acquisition + Data Management Software: The three softwares are part of the SCADA system. Compatible with the industry standards. Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters. Management, processing, comparison and storage of data. Sampling velocity up to 250 KS/s (kilo samples per second). Calibration system for the sensors involved in the process. It allows the registration of the alarms state and the graphic representation in real time. Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels. This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard. (5) Cables and Accessories, for normal operation. (6) Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance,

Calibration & Practices Manuals.

Exercises and Practical Possibilities to be done with Main Items

- 1.- Study of Rankine Cycle.
- 2.- Calculation of the real flow of condensate.
- 3.- Determination of the injector discharge coefficient.
- 4.- Obtaining the characteristic curves of the steam turbine.
- 5.- Turbine efficiency.
- 6.- Thermal balances.
- 7.- Determination of friction losses at various exhaust pressures.
- 8.- Determination of torque, power and specific steam consumption when the turbine operates at constant inlet pressure but varying exhaust pressure.
- 9.- Determination of torque, power and specific steam consumption when the turbine operates at constant exhaust pressure but varying inlet pressure.
- 10.- Determination of power-heat ratio when it is used as a back pressure turbine.
- 11.- Determination of thermal efficiency.
- 12.- Study of the specific steam consumption of the turbine.
- Additional practical possibilities:
- 13.- Sensors calibration.
- 14.- Determination of Isentropic efficiency.
- Other possibilities to be done with this Unit:
- 15.- Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

16.- Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc in real time.

- 17.- The Computer Control System with SCADA allows a real industrial simulation.
- 18.- This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 19.- This unit can be used for doing applied research.
- 20.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 21.- Control of the TTVC unit process through the control interface box without the computer.
- 22.- Visualization of all the sensors values used in the TTVC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

a) Industrial configuration

OPLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Digital inputs(X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.

Analog inputs block: 16 Analog inputs.

Analog outputs block: 4 Analog outputs.

Touch screen. Panasonic PLC:

High-speed scan of 0.32 µsec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.

Digital inputs/outputs and analog inputs/outputs Panasonic modules.

-TTVC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

Practices to be done with PLC-PI:

- 1.- Control of the TTVC unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the TTVC unit process.
- 3.- Calibration of all sensors included in the TTVC unit process.
- 4.- Hand on of all the actuators involved in the TTVC unit process.
- 5.- Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).

6.- Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).

- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for TTVC unit.
- 9.- PLC structure.
- 10.- PLC inputs and outputs configuration.
- 11.- PLC configuration possibilities.
- 12.- PLC programming languages.
- 13.- PLC different programming standard languages.
- 14.- New configuration and development of new process.
- 15.- Hand on an established process.
- 16.- To visualize and see the results and to make comparisons with the TTVC unit process.
- 17.- Possibility of creating new process in relation with the TTVC unit.
- 18.- PLC Programming exercises.
- 19.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

⑧ TTVC/CAI. Computer Aided Instruction Software System.

This complete package consists on an Instructor Software (INS/ SOF) totally integrated with the Student Software (TTVC/SOF).

-INS/SOF. Classroom Management Software (Instructor Software):

The Instructor can:

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Print reports.

Develop own examinations.

Detect student's progress and difficulties.

-TTVC/SOF. Computer Aided Instruction Software (Student Software):

It explains how to use the unit, run the experiments and what to do at any moment.

This Software contains:

- Theory.
- Exercises.

Guided Practices.

Exams.

③TTVC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.
- Faults affecting the actuators:
 - Actuators canals interchange at any time during the program execution.
 - Response reduction of an actuator.
- Faults in the controls execution:
 - Inversion of the performance in ON/OFF controls.
 - Reduction or increase of the calculated total response.
 - The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

c) <u>Higher Education and/or Technical and Vocational Education configuration</u>

10 TTVC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices. CAL will perform the calculations.

CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

d) Multipost Expansions options

1 Mini ESN. EDIBON Mini Scada-Net System.

EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The Mini ESN system consists on the adaptation of any EDIBON computer controlled unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

-It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.

-Open Control + Multicontrol + Real Time Control + Multi Student Post.

-Intructor controls and explains to all students at the same time.

-Any user/student can work doing "real time" control/multicontrol and visualisation.

-Instructor can see in the computer what any user/student is doing in the unit.

-Continuous communication between the instructor and all the users/students connected.

Main advantages:

-It allows an easier and quicker understanding.

-This system allows you can safe time and cost.

-Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

-Instructor's computer.

-Students' computers.

-Local Network.

-Unit-Control Interface adaptation.

-Unit Software adaptation.

-Webcam.

-Mini ESN Software to control the whole system.

-Cables and accessories required for a normal operation.

*Specifications subject to change without previous notice, due to the convenience of improvements of the product.

C/ Del Agua, 14. Polígono Industrial San José de Valderas. 28918 LEGANÉS. (Madrid). SPAIN. Phone: 34-91-6199363 FAX: 34-91-6198647 E-mail: edibon@edibon.com WEB site: **www.edibon.com**

lssue: ED01/13 Date: July/2013 **REPRESENTATIVE:**